
 
Abstract—This paper presents a new approach for color 

display of hyperspectral images. It is proposed to use the one-bit 
transform of hyperspectral image bands to select three suitable 
bands for RGB display. The proposed approach has low 
complexity and is very suitable for hardware implementation. A 
dedicated hardware architecture that computes the transitions in 
the one-bit transform of hyperspectral image bands to determine 
bands that contain more information and the corresponding 
FPGA implementation of the proposed architecture is presented. 
In the proposed approach, less-structured bands are initially 
eliminated using the total number of transitions in the one-bit 
transform of hyperspectral image bands. Then, three suitable 
bands are selected from within this remaining set of well 
structured bands, for RGB color display. The proposed approach 
provides a new method to facilitate color display of hyperspectral 
images, that has very low-complexity. 
 

Index Terms—Display of hyperspectral images, one-bit 
transform, low-complexity. 

I. INTRODUCTION 
yperspectral imaging sensors acquire data corresponding 
to hundreds of continuous narrow spectral bands [1]. 

Therefore, it is not possible to directly display hyperspectral 
images with conventional displays that typically display color 
images using three bands; namely red, green and blue (RGB).  

There are basically two methods available for the color 
display of hyperspectral images. The first approach is to 
perform some segmentation or classification on the 
hyperspectral image and display each segment/class with a 
different color. However, efficient segmentation/classification 
of the large amount of data captured in hyperspectral images 
is usually time consuming and complex. Furthermore, the 
natural appearance of the scene is usually lost if only a 
different color is used to represent each segment/class for 
display. The second approach is to obtain three representative 
bands and use these bands as RGB components for color 
display. These three bands can directly be three individual 
bands from the hyperspectral image, or they can be 
combinations of original bands. This approach is likely to 
result in loss of information as it can be regarded as the 
mapping of hyperspectral images with N components into 
images with only three components, so that the mapping is 
many-to-one. In this case it is important to obtain three 

appropriate bands that preserve information and enable 
interpretability [2], preferably with a low-complexity method. 

Principal Components Analysis (PCA) has commonly been 
used to obtain three new bands, that are actually the linear 
combination of original hyperspectral bands constructed using 
the Principal Component Transform (PCT), for hyperspectral 
image visualization [3-6]. In [3], it is noted that the PCT 
performance drops for poorly correlated data, and the 
correlation between hyperspectral bands is exploited by 
initially partitioning the entire data into subgroups of highly 
correlated bands and PCT is conducted separately on each 
subgroup. Important features are then selected from each 
transformed subgroup making use of variance information or 
separability; and these features are regrouped, after which the 
entire process is repeated until finally the most informative 
three features are used for color composite display. The 
principal component based display strategy for spectral 
imagery proposed in [4] maps the first three principal 
components to the HSV or RGB color spaces.  Fusion of 
hyperspectral data by means of partitioning the hyperspectral 
bands into three subgroups prior to principal components 
transformation (PCT), and using the first principal component 
of each subgroup for RGB hyperspectral image visualization 
is presented in [5]. Three different portioning methods: equal 
subgroups, maximum energy partitioning and partitioning 
based on spectral signature, have been employed for this 
purpose. In [6] it is proposed to whiten the noise before PCA, 
which is equivalent to rank the principal components in terms 
of signal-to-noise ratio, for hyperspectral image visualization.  

PCA has very high computational complexity because it 
requires finding the eigenvectors and eigenvalues of the 
covariance matrix. Therefore it is usually impossible to use a 
PCA based approach for large data sets without initially 
partitioning the data set.  

In [7], Independent Component Analysis (ICA), correlation 
coefficient and mutual information have been used to fuse the 
information from a large number of bands to three bands for 
the visualization of hyperspectral images. The design goals for 
hyperspectral image display systems and a display method 
using fixed linear spectral weighting envelopes is reported in 
[8].  A visualization technique that utilizes double color layers 
to integrate the mixture information (i.e., end members and 
their abundances) for each pixel for display has been studied 
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in [9]. In [10], methods to display hyperspectral images by 
linear projection onto basis functions are explored. Instead of 
PCA which provides a data adaptive projection, projections 
with fixed basis functions based on optimizing criteria in the 
perceptual color space and the standardized device color space 
are presented. 

It is proposed in this paper to utilize a one-bit transform 
(1BT) based approach for low-complexity selection of 
suitable bands for the RGB color display of hyperspectral 
images. Initially, relatively well-structured bands are obtained 
using the 1BT of each band. A dedicated hardware 
implementation for this approach is also presented. Finally, 
three suitable bands are selected from within this set of well-
structured bands for RGB display of the hyperspectral image. 
The proposed 1BT based approach provides a very low-
complexity method for effective color display of hyperspectral 
images, that is particularly suitable for dedicated hardware 
implementation. 

II. THE PROPOSED APPROACH 
In the proposed approach it is aimed to obtain three 

appropriate bands from all hyperspectral image bands that will 
preserve information and enable interpretability. A low-
complexity approach is targeted by making use of single bit-
depth representations of hyperspectral image bands obtained 
using the one-bit transform (1BT). Using the 1BT it is aimed 
to make use of the property that the human visual system 
(HVS) perceives variations as interesting only up to a certain 
point and then ignores these as noise. Shannon's entropy 
measures have been extended to second-order measures 
because of this feature; and the second order entropy that 
penalizes excessive variations has been used to more 
effectively identify information in images [11]. In this paper it 
is proposed to make use of the 1BT to identify hyperspectral 
image bands that do not contain comparatively excessive 
spatial variations and are therefore regarded to be well-
structured. 

A. Obtaining Well-Structured Image Bands using 1BT 
 

1BT based representations of image frames have mainly 
been used so far for block motion estimation in video coding 
to provide a reduction in computational complexity [12-15]. 
The first 1BT transform based approach proposed in [12], 
used the block mean as threshold value in image frames to 
represent pixels with a single bit-plane. In [13] a more 
effective 1BT has been proposed, where the original image 
frames have been compared with their multi band-pass filtered 
versions to construct one-bit/pixel representations. A 17 17×  
sized multi band-pass filter kernel which is used to filter the 
image frames is defined in the form of  
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The frequency response of this filter is shown in Fig. 1, 
where the multiple pass-bands are clearly visible. This multi 
band-pass structure also facilitates invariance to the spatial 
resolution (size) of the image. 
 

 
 

Fig.1. The magnitude frequency response of the 1BT filter. 
 

One-bit representations of image frames are then obtained 
as 
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where ( ),FI i j  is the filtered form of the image frame ( ),I i j  

and ( ),i j  are used as spatial indices. This idea is further 
improved for motion estimation by the multiplication free 1BT 
proposed in [14] and constrained 1BT proposed in [15]. 

 1BT approaches have been successfully utilized for 
motion estimation in video because they capture the overall 
structural information of the image quite well. In this paper it 
is proposed to make use of 1BT representations to obtain well-
structured hyperspectral image bands suitable for the color 
display of available information. For this purpose, the 1BT 
representation of each hyperspectral image band is obtained 
by applying the 17 17× sized multi band-pass filter kernel 
given in (1) to each hyperspectral band and comparing the 
result against the original image band, in order to obtain one-
bit representations of hyperspectral image bands using (2). 

Fig. 2 and Fig. 3 show example 1BT results for sample 
bands of the AVIRIS data set collected over Cuprite, NV, and 
the Indian Pine hyperspectral data set (a hyperspectral image 
which is taken over northwest Indiana’s Indian Pine test site), 
respectively. For both hyperspectral images, 1BTs of one less-
structured and one well-structured image band are shown. It is 
clearly seen that 1BTs of less-structured bands have a rather 
noisy appearance. 
As a measure of band characteristics, the spatial bit transitions 
in 1BTs (changes from 1 to 0, and vice-versa) are counted and 
the total number of transitions in horizontal and vertical 
directions of each band is used as a measure of structure. If 
the total number of transitions in the 1BT of an image band 



with band index l  is shown as ( )A l , it can be formulated as in (3).  

 
(a) 

 
(b) 

 
Fig.2. Example 1BTs of (a) Less-structured band (band #107) (total transition number is 67436) (b) Well-structured band (band #106) (total transition number is 

39925) for the Cuprite data. 
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Fig.3. Example 1BTs of (a) Less-structured band (band #109) (total transition 

number is 16465) (b) Well-structured band (band # 167) (total transition 
number is 6698) for the Indian Pine data. 
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Here, lB  shows the 1BT of image band l , ⊕  represents the 

Boolean exclusive-or (EX-OR) operation, and ( ),i j  are used 
as spatial  indices with the summation taking place over the 
entire image dimensions. Because of the Boolean nature, this 
process has very low-complexity and is particularly suited for 
dedicated hardware implementation. 

The total number of transitions is then compared against a 
local threshold to decide which bands to keep and which 

bands to discard. Therefore, after the total number of 
transitions in the 1BTs of all hyperspectral bands are obtained 
for a certain data set, the local thresholds can be computed as 
a moving-average. The utilization of a moving average as 
local threshold is a quite common local thresholding approach 
[16]. The local threshold utilized in this paper can be 
expressed in the form of 
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which is basically a moving average of size 7. Because there 
is typically high correlation between neighbor spectral bands 
in hyperspectral images, the local thresholding approach 
ensures that more informative bands in local neighborhoods 
are selected, thereby discarding, sometimes similar, less 
informative bands. Image bands are regarded to be well-
structured and retained if their ( )A l  values are below a 
threshold )(lT  in the form of 
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where )(lT  shows the threshold values and ( )S l  indicates if 
the image band l  is well-structured. Note that, the threshold 
values are set as )()( ltalT ×=  where a  is a constant used as 
threshold weighting factor to allow flexibility in the number 



of retained bands. Because the purpose of this step of the 
approach is to obtain an initial (rough) set of relatively well-
structured bands, there are no strict limits on the values of the 
moving average window size and a  parameters. 

The thresholds which are obtained in this form, as weighted 
local averages, are shown in Fig. 4 and Fig. 5 with the 
corresponding total number of transitions for the Indian Pine 
and Cuprite data sets, respectively. Hyperspectral image bands 
that have a transition number above the threshold are assigned 
to be less-structured and are discarded, while bands that have 
a total transition number below the threshold are retained 
(regarded as well-structured) and forwarded to the next step.  

Note that a larger weighting factor, a , will allow more 
bands to be kept as well-structured at the cost of a larger 
computational load in the next step, while a lower weighting 
factor will discard more bands reducing the computational 
load in the following step possibly at a cost of facilitating the 
display of slightly less information. The moving average 
window size and a  parameters are set empirically in this 
paper, and it is observed that the same a  parameters can be 
used for both test hyperspectral data sets, resulting in a 
different number of bands being forwarded to the next step. 
Alternatively, it is also possible to change the a  value for 
different hyperspectral images to have always the same 
number of bands being forwarded to the next step. 

 

 
Fig. 4. Total number of transitions and transition thresholds for 1BTs 

obtained for the Indian Pine data. 

 
Fig. 5. Total number of transitions and transition thresholds for 1BTs 

obtained for the Cuprite data. 

B. Selecting three suitable bands for Color Display 
 
In the second step, three suitable bands are selected for the 
RGB display of the hyperspectral image from within the well-
structured image band set forwarded from the previous step. 
Although all image bands forwarded to this step are relatively 
well-structured, the aim is to select three bands so that as 
much information as possible can be displayed if these bands 
are used as the red, green and blue bands of the RGB color 
image. For this purpose, the three image bands that are the 
least alike from the well-structured bands are selected in this 
step. 
 To obtain the least alike three bands of the well-structured 
data set, a correlation measure is used. For low-complexity, 
the correlation is computed over the 1BTs of the well-
structured hyperspectral image bands. Because the 1BTs of 
image bands provide binary representations, the correlation 
computation turns into a simple sum of bitwise EX-OR 
computations between the 1BTs of image pixels located at the 
same spatial location of different image bands. 
 In this step, initially the two least similar bands are selected. 
For this purpose the sum of the EX-OR result between all 
possible well-structured image bands is computed. The two 
bands that give that highest total EX-OR result will have the 
largest difference and are selected as the two least similar 
well-structured image bands. These bands constitute two of 
the bands to be used in the color display phase. The third band 
is selected from the remaining well-structured bands as the 
band which is again least alike to the already selected two 
bands. For this purpose the total sum of the EX-OR results of 
the remaining bands with the first and second selected bands 
are added up, and the band giving the largest sum is selected 
as the third band to be used for color display. Note that, in 
case two different bands have the same total sum of EX-OR 
results with the first and second bands, it is furthermore 
possible to consider their distances to the first and second 
band individually. In this case it is possible to additionally 
consider the ratio of the distances to the first band and second 
band, and select the band that has a ratio closer to unity. This 
will ensure that in case of equality, a mid-point band is 



selected rather than a band close to the first (or second) band. 
An alternative is to use the minimum of the sum of the inverse 
of EX-OR results, which has been observed to give the same 
bands in the experimental results. 
  

III. HARDWARE ARCHITECTURE 
The proposed algorithm used for obtaining well-structured 

hyperspectral image bands is particularly suitable for 
hardware implementation because of its binary and regular 
nature. The proposed hardware architecture that computes the 
transitions in the one-bit transforms of the hyperspectral 
image bands according to (3) is shown in Fig. 6.  

The implementation of (3) includes multiple sequential 
summations of the EX-OR results of consecutive (horizontal 
or vertical) image pixels of the 1BTs. If 1BTs have a size of 
M N×  pixels, a total of  2( ) 1M N× +  sequential summations 
are required. It is seen in Fig. 6 that the horizontal and vertical 
transitions are counted on separate parts of the hardware, in 
parallel. Therefore the left hand side of the architecture shown 
in Fig. 6 has a data path size determined by the first dimension 
of the image (M), while the right hand side has a data path 
determined by the second dimension of the image (N). The 
total processing delay incurred by the hardware is therefore 
directly determined by the larger image dimension (horizontal 
or vertical). Results in this paper will be given for a hardware 
architecture that is implemented for an image size of 
145 145× pixels, taking the Indian Pine hyperspectral data set 
into account. In this case, 145 sequential summations for the 
hardware implementation are necessary to obtain the ( )A l  
value of an image band. In Fig. 6 it is shown that the Boolean 
EX-OR operations are performed by the EX-OR array, all in 
parallel, as this is the first step of the calculation of the total 
vertical/horizontal transitions. 

Parallel counter architectures are suitable to accomplish the 
desired summation operation with a high performance. A 
( | )p q  parallel counter is a combinatorial logical module that 
determines how many of its p  inputs are in the logical one  
state, expressing the result as a binary parallel number at its q  
outputs [17]. A parallel counter can be viewed as a multiple-
word input adder with 1-bit words [18].  

 

 
Fig. 6.  Proposed architecture for calculation of ( )A l  values of individual 

bands, where x⎡ ⎤⎢ ⎥   denotes the smallest integer i  such that i x≥ . 

 
In [19] a parallel counter architecture referred to as carry 

shower is implemented with full and half adders. The method 
used in [19] is shown for a (31 | 5)  parallel counter in Fig. 7. 

This approach groups counter inputs into / 3p⎢ ⎥⎣ ⎦  sets of three 

lines each, which are input to full adders (where x⎢ ⎥⎣ ⎦  denotes 

the largest integer less then or equal to x ). The / 3p⎢ ⎥⎣ ⎦  sum 

and / 3p⎢ ⎥⎣ ⎦  carry outputs of the full adders and any other 
unprocessed inputs to the counter are grouped into threes and 
applied to the second (smaller) set of full adders, etc. The 
number of full adders to realize a ( | )p q  parallel counter is 
derived in [19] to be less then or equal to p . 

 

 
 

Fig. 7. Carry shower circuit for 31p = . 

 
In [20], large parallel counters with up to 1022 inputs are 

designed based on different base counter types, e.g. 
(3 | 2),  (7 | 3),  (31 | 5) . It has been concluded that parallel 
counters designed based on the smallest counter cells, i.e. 
(3 | 2)  and  (2 | 2) , have the best area delay×  performance. 
The total delay of the parallel counter is equal to the sum of 
individual block delays of all levels of the parallel counter 
architecture. 

The delays of synthesized blocks are obtained as 
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approximately  0,411ns  and 1,635ns  for the (3 | 2)  counter 
and the final adder, respectively. The delays of the (3 | 2)  
counter and the (2 | 2)  counter are the same because of the 
technology of the FPGA on which the blocks are 
implemented. The total delay of the parallel counter is 
obtained as 
 

2( 1)tot add bc cD D L D D= + − × +   (6)   
 
where totD ,  addD , bcD , and 2cD  show the total delay, and the 
delays of the final adder, base counter and (2 | 2)  counter, 
respectively. Here, L  denotes the number of levels of the 
parallel counter. For an image size of 145 145×  pixels, 144 
EX-OR results are obtained for each row or column of the 
image, that need to be summed. Because in this case the 
maximum sum can be represented with 8 bits, a (144 | 8)  sized 
parallel counter is required. Because there are 11 levels in the 
hierarchy of the parallel counter of size (144 | 8) , the total 
delay of the system is obtained to be approximately 6,156ns . 
The combinational path delay of the parallel counter 
dominates the maximum clock frequency of the hardware. 
Thus the maximum clock frequency of the hardware in this 
case is approximately 162 MHz.  For an M N×  pixel sized 
image with M N≥ , the proposed hardware architecture needs 
only M  cycles  to perform the 2( ) 1M N× +  operations of 
(3). 

IV. EXPERIMENTAL RESULTS 
The effectiveness of the proposed approach is evaluated 

using two different hyperspectral data sets. The first data set is 
taken over northwest Indiana’s Indian Pine test site in June 
1992 [21]. This data consists of 145 145×  pixels with 220  
bands. The number of bands is initially reduced to 200  bands 
by removing bands covering water absorption and noisy 
bands. The second data set is the last part of the AVIRIS data 
set collected over Cuprite, NV. This data contains 614 158×  
pixels with 224 spectral bands. After removing bands affected 
by atmosphere, 197 bands are retained for this set.  
  After the first step of the proposed approach, which 
determines well-structured hyperspectral image bands, 25 
bands are retained for the Indian Pine data and 15 bands are 
retained for the Cuprite data. For both sets, the same a  
constant is used as threshold weighting factor, which is set to 
0.95 to provide a reasonable balance between complexity and 
selectivity. In the next step, the three bands to be used for 
RGB display are selected from these well-structured bands. 
Table I shows the band index values for image bands retained 
after the first and second band selection steps for the Indian 
Pine and Cuprite data sets. 

Although it is possible to assign the three obtained bands 
randomly to the red, green and blue components of the image, 
a standard approach is preferable, particularly for comparative 
evaluation. Therefore we preferred to make this assignment 

according to the standard deviation of each band. The band 
with the highest standard deviation is assigned to the red 
component, the band with the second highest standard 
deviation is assigned as the green component, and the band 
with the lowest standard deviation is assigned as the blue 
component. This assignment procedure is utilized for the 
proposed approach as well as the PCA based display method 
used for comparison, to provide consistency. 

Fig. 8 shows the three selected bands, their 1BTs and the 
RGB color image of these bands for the Indian Pine data set. 
The bands with indices 5, 75 and 169 shown in Fig. 8 (a), Fig. 
8 (b), and Fig. 8 (c) are used as red, green and blue 
components for the Indian Pine data. Fig. 9 shows the three 
selected bands and the RGB color image of these bands for 
the Cuprite data set. The bands with indices 216, 152, 116 
shown in Fig. 9 (a), Fig. 9 (b), and Fig. 9 (c) are used as red, 
green and blue components for the Cuprite data. 

PCA based image visualization of the hyperspectral images 
obtained by mapping the first three principal components to 
the RGB color space is also performed for comparison. 
Visualization results for the proposed approach and the PCA 
based approach are shown together in Fig. 10. Because PCA 
could not be applied to the entire Cuprite data due to high 
complexity resulting from the large horizontal and vertical 
data dimension, a sub-image was used for comparative 
evaluation. It is seen that the proposed approach displays 
about equally as much detail as observed with the PCA based 
approach, but has a much lower computational complexity. 
While the proposed approach revealed black regions for this 
data set, for practical purposes a black colored region has no 
different meaning from a red colored region because a simple 
mapping to RGB components is carried out. 

It is reported in [7] that the correlation between RGB 
components can be used as a measure of success for methods 
that are proposed for color display of hyperspectral images, 
because natural color images have typically high correlation 
between RGB components.  Table II and Table III show the 
correlation coefficients between the RGB components of the 
Indian Pine image for the proposed and PCA based 
approaches. Table IV and Table V show the correlation 
coefficients between the RGB components of the sub-image 
cut out from the Cuprite data, for the proposed and PCA based 
approaches. It is seen that the proposed approach provides 
much higher correlation values compared to the PCA based 
approach. Table VI shows the correlation coefficients between 
the RGB components of the entire Cuprite image obtained 
with the proposed approach (which can not be accomplished 
with the PCA based approach because of computational 
complexity), and it is seen that in this case again high 
correlation is obtained. 

V. CONCLUSION 
 This paper proposes a new approach for the color display 

of hyperspectral images with low complexity. The approach is 
based on using the one-bit transforms of hyperspectral image 



bands to select three suitable bands for RGB display. Because 
the selection of image bands is performed entirely over 1BT 
representations using mostly Boolean operations, the 
computational complexity is very low and the proposed 
approach is furthermore very suitable for dedicated hardware 
implementation. 
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TABLE I 

BAND INDEX NUMBERS OBTAINED AT THE FIRST BAND SELECTION (FBS) STEP AND THE SECOND BAND SELECTION (SBS) STEP. 
 

Data Set FBS SBS 

INDIAN 
PINE 

5, 6, 7, 31, 33, 34, 75,  76, 
100, 101, 102, 111, 112, 
113, 114, 145, 146 , 147, 
148, 166, 167, 168 , 169, 

173, 216 

5, 75, 169 

CUPRITE 
104, 105, 106, 116, 117  
150, 151, 152, 170, 171  
172, 176, 177, 213, 216 

116, 152, 216  

 

   
(a) (b) (c) 

   
(d)  (e)  (f)  

 

 

 

 (g)  
 
 
 

Fig.8. (a) Band # 5 , (b) band # 75 , (c) band # 169  (d) 1BT band # 5 (transition number is 9724), (e) 1BT band # 75 (transition number is 8236) (f)1BT band # 
169 (transition number is 6262) (g) RGB color display of these bands for the Indian Pine data set. 
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(d) 

 
Fig.9. (a) Band # 216 (transition number is 55218), (b) band # 152 (transition number is 45703) (c) band # 116 (transition number is 45606) (d) RGB color 

display of these bands for  the Cuprite data set. 
 

 
 
 
 



  
(a)  (b) 

  
(c) (d) 

 
Fig.10. (a) PCA color display results for the Indian Pine data (b) proposed color display results for the Indian Pine data
 (c) PCA color display results for part of the Cuprite data, (d) proposed color display results for part of the Cuprite data.  

 
 

TABLE II 
CORRELATION COEFFICIENTS BETWEEN THE RGB COMPONENTS OF THE 

INDIAN PINE IMAGE OBTAINED BY THE PROPOSED APPROACH. 
Proposed 
Algorithm R  G  B  

R  1 -0.4877 0.9070 
G  -0.4877 1 0.5193 
B  0.9070 0.5193 1 

 
TABLE III 

CORRELATION COEFFICIENTS BETWEEN THE RGB COMPONENTS OF THE 
INDIAN PINE IMAGE OBTAINED BY THE PCA BASED APPROACH. 

PCA R  G  B  
R  1 0.0820 0.0740 
G  0.0820 1 8.2694e-004 
B  0.0740 8.2694e-004 1 

 
TABLE IV 

CORRELATION COEFFICIENTS BETWEEN THE RGB COMPONENTS OF THE 
CUPRITE SUB-IMAGE OBTAINED BY THE PROPOSED APPROACH 

Proposed 
Algorithm R  G  B  

R   1 0.8360 0.8211 
G   0.8360 1 0.9809 
B  0.8211 0.9809 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE V 

CORRELATION COEFFICIENTS BETWEEN THE RGB COMPONENTS OF THE 
CUPRITE SUB-IMAGE OBTAINED BY THE PCA BASED APPROACH 

PCA R  G  B  
R  1 0.0127 0.0230 
G  0.0127 1 0.0127 
B  0.0230 0.0127 1 

 
TABLE VI 

CORRELATION COEFFICIENTS BETWEEN THE RGB COMPONENTS OF THE 
ENTIRE CUPRITE IMAGE OBTAINED BY THE PROPOSED APPROACH. 

Proposed 
Algorithm R  G  B  

R   1 0.8933 0.8853 
G   0.8933 1 0.9811 
B  0.8853 0.9811 1 

 
 
 
 
 


